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Abstract: Large-scale graph data is a research hotspot in the processing of big data and is generally 
used in traffic management, analysis of social network and semantic web, etc., resulting in the 
emergence of a variety of large-scale graph computing platforms. How to select a more suitable 
graph computing platform for different tasks has become one of the hot topics in the field of graph 
computing. The related knowledge of graph computing models is systematically reviewed in this 
paper. First of all, the concept of graph computing model is outlined, including the definition and 
characteristics of graph computing and the development of graph computing models. Then, three 
kinds of graph computing models are introduced. Finally, the development process of the graph 
computing models is summarized, and the future research direction is prospected.   

1. Introduction 
Graph computing is an important branch in the field of big data processing. It has extensive 

theoretical research and practical application value and has been applied to solve practical problems. 
Graph computing, as one of the most commonly used types of abstract data structures in computer 
science, can effectively express the widely existing relationships between objects, especially in 
large-scale social networks. If we regard a user as a vertex and a friend relationship between users 
as a directed edge, even if we merely count the friend relationships, the Facebook social network is 
a gigantic graph with over one billion vertices and one hundred billion edges. Considering that 
Facebook is building all the physical data vertices into a mesh structure, the resulting massive 
network data scale has become impotent in the traditional single-machine processing, which must 
be processed in parallel using distributed network.  

This paper systematically reviews the research progress of the large-scale graph computing 
platforms, which lays a foundation for further studying the theory of large-scale graph computing 
platform and expanding its application field. According to the computing object, they are divided 
into three types: vertex-centered computing model, edge-centered computing model, and subgraph-
centered computing model. The vertex-centered model is further divided into three categories 
according to computing task scheduling methods: synchronous computing model, asynchronous 
computing model and hybrid computing model. The classification of computing models is shown in 
Figure 1. In this paper, we select the classical computing models from the graph computing systems 
using various computing models, introduce its iterative operation characteristics and performance, 
and finally summarize the development process of the graph computing model, and look forward to 
the future developing direction of the graph computing models. 

 
Figure 1. The classification of graph computing models 
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2. Overview of Large-Scale Graph Computing Models 
Google proposed the earliest graph computing model based on the BSP (bulk synchronous 

processing) framework [1], which converts graph computations into fine-grained vertex 
computations. Since then, the BSP model has become the basis for various types of graph 
computing systems. The BSP model is shown in Figure 2. The iterative computing is divided into 
multiple super-step operations. One super-step operation completes one round of iteration 
computing. The three tasks are executed in parallel in the super-step and the data synchronization 
between the tasks is completed after each super-step operation. The BSP model provides a solution 
for the segmentation and fine-grained parallel computing of the iterative graph algorithm faced by 
the computing model. 

Therefore, the three-step strategy (computation-communication-data synchronization), which is 
abstracted from BSP model, has become the classical framework of the graph computing models. 

 
Figure 2. Three-step strategy of BSP 

3. Vertex-Centered Model 
Google The basic graph structure is expressed as: 

),,( DEVG =  . 
The vertex-centered computing model considers the   in the graph as the computing center. The 

user can customize the update function to perform related operations on the vertices. 
Before the graph computing models were proposed, the graph data analysis systems generally 

used the MapReduce framework, but MapReduce could not solve the problems such as frequent 
data partitioning and reorganization, excessive communication overhead, and limited computational 
parallelism caused by the frequent iterative operations of the graph computing. 

In order to solve these problems, Google first proposed a vertex-centered computing model 
based on the BSP model in 2010. It converts the frequently iterated global calculations into multiple 
super-steps, and all vertices independently execute operations in parallel. The data dependencies 
only exist in two adjacent super-steps. 

In this chapter, the vertex-centered computing models are divided into synchronous computing 
model, asynchronous computing model, and hybrid computing model according to the data 
synchronization strategy. 
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3.1 Synchronous Vertex-centered Model 
The graph computing often needs to go through several iterations. The synchronous vertex-

centered model converts each round of iterations of the graph algorithm into one super-step 
operation for each vertex in the graph. One super-step operation includes three steps: a) receiving 
the information sent by the in-neighbors of the current vertex in the last super-step; b) performing 
the computing function which is defined by programmers to compute the new value of the current 
vertex according to the received information; c) sending update information to all out-neighbors of 
the current vertex. After all vertices complete one super-step operation, they update the vertex 
information synchronously, and then enter the next super-step operation. 

The synchronous vertex-centered model converts the computations in Figure 3 to the parallel 
computations at each vertex in Figure 4. For example, Vertex 2 first executes Step 1 to collect the 
update message sent by the in-neighbor Vertex 1; secondly executes Step 2 to run the computing 
function; and finally executes Step 3 to send the result to the out-neighbor Vertices 3 and 4. After 
waiting for the longest-running Vertex 4 to complete this super-step operation, global data 
synchronization is performed, and all vertices then enter the next round of super-step operations. 
The global synchronization operation allows all data to be simultaneously updated at the beginning 
of each super-step operation, ensuring the consistency of the calculated data. 

 
Figure 3. An example 

 
Figure 4. An example of synchronous computation 

3.2 Asynchronous Vertex-centered Model 
The synchronous model requires vertices that perform parallel computing to wait for the end of 

the slowest vertex. When the degrees of the vertices in the graph are very different, for example, a 
small number of vertices have a large number of edges and neighbors, which requires longer 
computing time and more communication overhead. The system will be limited to the slower 
vertices and cannot obtain the best computing efficiency. In 2010, researchers at Carnegie Mellon 
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University proposed GraphLab, an asynchronous graph computing system, and in 2012 released the 
improved system Distributed GraphLab [3]. 

The asynchronous computing model is the same as the iterative design of the synchronous 
computing, and is still the BSP three-step operation model. However, when receiving the message 
of the previous round of super-step computing, the updated data is no longer pushed by the 
neighbor vertices. It is up to the computing vertices to selectively read messages from the neighbor 
vertices.  

In the asynchronous model, each vertex does not perform global data synchronization when 
performing a super-step operation, but asynchronously reads or updates the neighbor vertex's edges 
and information. After completing the three steps of the super-step operation, each vertex executes 
the next super-step operation independently. 

In the asynchronous model, vertices may generate read and write accesses to vertices or edges at 
the same time. Therefore, in order to ensure data consistency, three schemes of consistency are 
proposed in the asynchronous model according to the ranges of the associated edges and neighbor 
vertices that each vertex can read and update asynchronously. The three schemes are: vertex 
consistency, edge consistency, and global consistency. The correlation edges and neighbor vertices 
(namely domain) that each vertex can operate in three consistency types are shown in Figure 5. 

 
Figure 5. The operation domain of consistency schemes of asynchronous vertex-centered model. 

3.3 Hybrid Vertex-centered Model 
On Both synchronous and asynchronous computing models use vertices as the computing centers 

and edges as the information delivery paths. Therefore, the computing capacity of the two models is 
limited by the distribution characteristics of the vertices and edges in the graph data. The two main 
problems are: 1) when the number of edges is much larger than that of vertices, the communication 
overhead of the vertex-centered computing model will be much larger than computation overhead; 
2) when the difference in the degrees of the vertices increases, the vertex with more degrees has 
more neighbor vertices. Larger vertices in the asynchronous model will maintain a large number of 
locks in order to maintain data consistency, and their neighbor vertices will have frequent locking 
request conflicts due to accesses to the vertex. Gonzalez et al. [4] proposed a hybrid vertex-centered 
model GAS to solve the above problem of graph computing. The GAS computing model follows 
the concept of super-step in the synchronous vertex-centered computing model, and achieves 
parallel computing within a single computing vertex by dividing the large vertices. As shown in the 
figure, GAS divides the vertex into two computing units: the right master vertex and the left mirror 
vertex. Each time the super-step operation is divided into three steps: 

1) Gathering and summing, that is, to collect neighboring vertices and edge information of a 
computing vertex, and executing a user-defined function to summarize the obtained information to 
the master vertex; 

2) Applying and updating, the master vertex performs a user-defined computing operation, and 
updates the mirror vertex to the computed new value. 

3) Scattering, the master vertex and the mirror vertex push the update information to their 
respective neighbor vertices and edges. 

Compared with the asynchronous vertex-centered computing model, the GAS computing model 
has significant improvements in both the computational parallelism and the computational speed 
when analyzing densely distributed graph data. 
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3.4 Summary 
The vertex-centered model converts the common iterations in the graph algorithm into vertex 

computing that can be conducted in parallel, and solves the limitations of the MapReduce 
distributed framework. The three models have their advantages in simplicity, parallelism, and 
computation speed. 

Compared with the asynchronous vertex-centered model and the GAS computing model, the 
synchronous vertex-centered model brings a long time of data synchronization waiting overhead, 
the computing parallelism and the computing speed are limited, but the implementation is simple 
and there is no need to maintain the complexity of data consistency. The strategy is therefore 
applied to a number of graph computing systems. 

Asynchronous vertex-centered model improves the utilization of computing resources. As the 
scale of graph data increases, its computing advantage becomes more significant. However, the 
asynchronous vertex-centered model also introduces the overhead of maintaining data consistency. 
The data consistency strategy is complicated to implement and is prone to conflicts and errors. 
Therefore, most graph computing systems choose to implement synchronous and asynchronous 
computing models at the same time. 

The GAS computing model achieves parallel computing within one vertex by dividing the vertex, 
and its computational parallelism is better than that of the asynchronous vertex-centered model. 
When there are significant differences in the degrees between vertices in the graph data of the 
analysis, the computational advantage of the GAS computing model is also more significant. 
Therefore, the GAS computing model is applied to and improved by many graph computing 
systems, such as BiGraph [12] and PowerLyra [13]. However, the implementation of the GAS 
computing model is more complex than that of the asynchronous and the synchronous models. 

4. Edge-Centered Model 
The vertex-centered model improves the ability of graph computing system to implement graph 

computing and analysis. However, it still faces some problems in practical applications: a) in order 
to increase the speed of random access to neighbors of computing vertices, graph computing 
systems generally load complete graph data into memory. Therefore, when the graph data size is too 
large, the vertex-centered computing model is usually implemented in a distributed system; b) when 
the number of edges in the graph data is much larger than that of vertices, the time overhead for 
information updating and distributing operations in each super-step operation will be much greater 
than the vertex computing time. Communication becomes the major bottleneck for graph computing, 
limiting the speed at which major computations are performed. 

To solve the computing problems of graph data when equipment resources are limited and the 
number of edges is much larger than that of vertices, the EPFL instituted the edge-centered model 
in 2013 and applied it to the graph computing system X-Stream [5]. The edge-centered computing 
model constructs the graph algorithm as a flow-iteration computing on the edge list of the graph 
data. It completes the computing, sorting and updating in three steps at each round of iteration: a) 
reads the edge list stream to complete the user-defined computing operation, outputs updated 
information to the destination vertex list; b) the applications shuffle the list of destination vertices as 
the updated message flow; c) reads the updated message flow and source vertex list, and updates the 
source vertex value. 

Three-step operations are performed sequentially in an iterative computing. The edge-centered 
computing model takes the edge data of the graph data as the core data structure and maintains the 
source vertex list. Each round of iteration of the computing operation updates the destination vertex 
list, which is recorded on the edge list and is calculated for each edge. The destination vertex 
updates the message sequence. 

The edge-centered computing model converts the iterative computing of the graph algorithm into 
sequential execution on the edge list, avoiding the high requirements of random read-write data on 
memory resources, thereby solving the problem of resource limitation and communication overhead 
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faced by the vertex-centered computing model. The computing characteristics of the flow-
sequencing algorithm in the edge-centered computing model make it possible to perform block-by-
block computing on the global graph data and sequentially access the data stored on the hard disk, 
reducing the requirement for memory capacity of graph data analysis and computing. That means 
conducting large-scale graph data analysis and processing on a stand-alone machine can be 
achieved. Therefore, the edge-centered computing model meets the computing needs of analyzing 
graph data whose number of edges is much larger than that of vertices on a stand-alone system [13]. 

5. Subgraph-Centered Model 
The vertex-centered computing model and the edge-centered computing model transform the 

graph algorithm into iterative computing that can be performed on vertices and edges. But at the 
same time, the parallelism of the graph computing is limited to the vertex and edge levels. 

In order to solve the above problems, the IBM Almaden Research Center proposed a subgraph-
centered computing model in the graph computing system Giraph + + [6] in 2013. In this model, the 
computations on the complete graph structure are transformed into iterative super-steps on multiple 
subgraphs. The subgraph-centered computing model forms each subgraph of each vertex and its 
associated edges and neighbor vertices in the original graph. 

After the subgraph-centered computing model completes the graph division, iterative graph 
computations are performed on multiple subgraphs in parallel, and one super-step operation 
performs two steps: 1) the subgraph executes user-defined computing operations in parallel, and 
outputs the computing results; 2) subgraphs containing the same vertices update vertex information. 
Step b) can be performed synchronously after the operation of step a) of all subgraphs or 
asynchronously while preserving data consistency. 

In order to prove the above analysis results, algorithms such as Unicom subgraph, PageRank, 
and graph clustering were tested on a data set whose graph vertex size was over a million and edge 
scale was over 100 million. The experimental results showed that the computing speed of the 
subgraph-centered computing model is 63 times faster than that of the vertex-centered computing 
model, and the number of iterations and communication overhead are reduced by 70% and 90% 
respectively compared with the vertex-centered computing model. 

The subgraph-centered computing model converts the graph algorithm into iterative 
computations on multiple subgraphs through the subgraph division method, which successfully 
reduces the communication overhead and the number of iterations. Therefore, in the short time after 
the subgraph-centered computing model is proposed, many graph computing systems adopted the 
subgraph-centered computing model and made improvements to subgraph division problems, such 
as N Scale [11] and Arabesque [15]. 

The heading for subsubsections should be in Times New Roman 11-point italic with initial 
letters capitalized. 

6. Conclusion 
In order to cope with the challenges posed by the complex and ever-changing large-scale data 

analysis, the industry and academia have successively proposed various types of graph computing 
models. This paper summarizes the three types of graph calculation models, each with its own 
characteristics, as shown in Table 1 and Table 2. 

Table 1. Table captions should be placed above the table 

Graphics Top In-between Bottom 
Tables End Last First 

Figures Good Similar Very well 
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Table 2. Comparison of graph computing models (1) 

Graph  
Computing 
Systems 

Task 
scheduling 

Data 
partitioning 

Parallelism 
performance 

Systems 

Vertex-centered Synchronous/ 
Asynchronous 

Vertex sequence 
subsets 

High Distributed/ 
Stand-alone 

Edge- 
centered 

Synchronous/ 
Asynchronous 

Edge  
sequence 
subsets 

Medium Stand-alone 

Subgraph-
centered 

Synchronous/ 
Asynchronous 

Subgraphs Low Distributed/ 
Stand-alone 

Table 2. Comparison of graph computing models (2) 

Graph  
Computing 
Systems 

Advantages Disadvantages 

Vertex-centered The model is easy to implement 
and easy for algorithm migration. 
High computational parallelism 
can be used for synchronous or 
asynchronous scheduling. It is 
applicable to all types of 
algorithms. 

The communication overhead 
between computing vertices is large, 
and the number of iterations required 
to complete the graph computation is 
large. The computational parallelism 
is limited by the data consistency. 

Edge- 
centered 

Resources required by the model 
are low. Data storage, chunking 
and  read-write access are simpler. 
Data access is performed 
sequentially, making it easy to 
maintain data consistency. 

Computational parallelism is limited 
by the edge list block. Graph 
algorithm migration is complex and 
the application scope is small. 

Subgraph-
centered 

The communication overhead 
between the super-step operations 
is small, and the number of 
iterations to complete the graph 
algorithm is small. 

Computational parallelism is limited. 
Subgraph-based data partitioning is 
difficult. The user-definable subgraph 
division is complicated. 

The algorithms of various types of graphs on the vertex-centered computing model are simple to 
implement and are applicable to stand-alone or distributed systems. However, the system is faced 
with the problems of large communication overhead and difficulty in data division. The data 
division of the edge-centered computing model is simple and it is applicable to stand-alone systems, 
but the parallelism of computation is limited, and the general computing time is very long. The 
subgraph-centered computing model proposes the shortest time, its communication overhead is 
small and the number of iterative operations performed is small, but the computational parallelism 
is limited by the divided sub-graphs. 

Although various types of computing models have been improved in terms of graph data analysis 
in many aspects, communication overhead, data consistency, and computational parallelism are still 
important issues that need to be considered in the design of computing models in the future. Data 
consistency and computational parallelism are mutually restrictive, and the higher the 
computational parallelism, the greater the overhead of maintaining data consistency, and the higher 
the computational parallelism, the greater the communication overhead. Therefore, the graph 
computing models should be gradually refined to meet different computational needs. 
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In addition, the real graph data is often in a state of rapid updating, which requires that the graph 
computing systems can quickly complete the computation of the updating data, otherwise the 
computing results cannot meet the timeliness requirements. Therefore, designing a real-time graph 
computing model has become the research direction of the graph computing models. 
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